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Tighter decoding reliability bound for Gallager’s error-correcting code
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Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite
message length for an ensemble of Gallager’s error correcting codes. We follow Gallager’s approach of upper
bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general
bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature.
The relation between the methods used and those presented in the information theory literature are explored.
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Many of the problems addressed in the Informati
Theory ~IT! literature show great similarity to those treat
in statistical physics. One of the main areas where these l
are particularly strong is that of digital communication a
coding theory; these links have been recently examined
the area of low-density parity check@1,2# and turbo@3# error-
correcting codes. It is only natural to expect that some re
tions between the analytical methods used in the two di
plines will emerge, and that advances in one could
employed to improve results in the other. In this paper
focus on such an example. We utilize the replica method
statistical physics to assess the performance of Gallag
error-correcting code in the case of finite message len
generalizing an established method in the IT commun
The analysis reproduces the tightest general bound to d
but more importantly, it provides exact results to spec
code constructions.

Error-correcting codes play a vital role in facilitating r
liable data transmission, ranging from cellular communi
tion to data storage on magnetic media. In a general scen
theN-dimensional Boolean messagejP$0,1%N is encoded to
the M (.N)-dimensional Boolean vectorz0, and transmitted
via a noisy channel, which is taken here to be a binary sy
metric channel~BSC! characterized by flip probabilityp per
bit; other transmission channels may also be exami
within a similar framework. At the other end of the chann
the corrupted codeword is decoded utilizing the structu
codeword redundancy.

The block error ratePE , defined as the probability for a
decoding error, serves as a performance measure for the
cess of the coding method. In his seminal work@4#, Shannon
showed that the error rate can vanish for code ratesR below
the channel capacity in the limitN,M→`; in the case of the
BSC and unbiased messagesR5N/M,12H2(p), where
H2(p)52p log2p2(12p)log2(12p). The upper bound, for
infinitely long messages, is often termedShannon’s limitto
the error-correcting ability. EvaluatingPE for practical codes
of finite length became one of central topics in IT.

For maximum likelihood~ML ! decoding where the mos
probable message, given the possibly corrupted codew
defines the message estimate, it is believed thatPE of the
best code scales as exp@2ME(R)#. The non-negative expo
nentE(R) is termed thereliability function ~RF!; it becomes
1063-651X/2001/64~4!/046113~4!/$20.00 64 0461
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positive below the channel capacity defining the sensitiv
of the optimal error rate to the message length, complem
ing Shannon’s result.

Unfortunately, assessing the RF directly is generally d
ficult. Instead, Gallager’s powerful method@5# boundsE(R)
from the below utilizing the inequality

PE< Tr
$y,x%

P1/(11r)~y,x!@ Tr
$x8Þx%

P1(11r)~y,x8!#r, ~1!

which holds for any arbitrary ML estimation, inferring a b
nary vectorx after observing a vectory, and a positive vari-
abler.0.

The average error rateP̄E for a certain ensemble of code
is greater than the ensemble minimum. Therefore, avera
the right-hand side of Eq.~1! over the ensemble, one obtain
an upper bound to the minimum error rate that sca
exponentially with M for large but finite N and M,
exp@2MEav(r,R)#; the exponentEav(r,R) serves as alower
boundof E(R). One can tighten the lower bound by max
mizing Eav(r,R) with respect tor.0.

EvaluatingEav(r,R) is also difficult ~except forrPN).
The strategy used by Gallager@5# is to further upper bound
the RHS of Eq.~1! utilizing Jensen’s inequalitŷxr&<^x&r,
which holds for any 0<r<1 with respect to the expectatio
over any arbitrary distribution of a positive variable. Th
added inequality presumably makes the bound looser.
therefore surprising that maximizing the exponent with
spect torP@0,1# in the ensemble of all random codes havi
the same rateR, which results in therandom coding expo-
nent Er(R), provides an exact evaluation of the RF for hig
R values.

However, the bound byEr(R) becomes loose once th
optimal value ofr reaches the upper limit of the interval, i.e
r51 ~corresponding to Bhattacharyya’s bound!. It is not
clear whether Jensen’s inequality or Gallager’s inequality~1!
is responsible for this breakdown. Moreover, it is uncle
how to devise a similar method for deriving bounds for oth
~nonrandom! codes, a question of high practical significanc

In this paper we demonstrate how the methods of stat
cal physics may be employed to obtain tighter bounds
specific codes. This is carried out by a direct evaluation
Eav(r,R) for the ensemble of Gallager error-correctin
codes@6#. This ~linear! code was rediscovered only recent
©2001 The American Physical Society13-1
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@7#, showing outstanding performance, competitive to ot
state-of-the-art techniques. It is characterized by a rando
generated (M2N)3M Boolean sparse parity-check matr
H, composed ofK and C(>3) nonzero~unit! elements per
row and column, respectively. Encoding the message ve
j, is carried out using theM3N generating matrixGT, sat-
isfying the conditionHGT50, wherez05GTj ~mod 2!. The
M bit codewordz0 is transmitted via a noisy channel, BSC
the current analysis; the corrupted vectorz5z01z ~mod 2! is
received at the other end, wherezP$0,1%M represents a nois
vector with an independent probabilityp per bit having a
value 1. Decoding is carried out by multiplyingz by the
parity-check matrixH to obtain the syndrome vectorJ5Hz
5H(GTj1z)5Hz ~mod 2!, and to find the most probabl
solution to the parity check equationHn5J ~mod 2!, for
estimating the true noise vectorz. One retrieves the origina
message using the equationGTS5z2n ~mod 2!.

To facilitate the analysis we map the Boolean (0,1) va
ables onto the binary (61) representation. The binary vec
tors n andJ represent the noise estimate and syndrome v
tors, respectively; the latter is generated by taking produ
of the relevant noise bitsJm5z i 1m

•••z i Km
, where the indices

i 1m , . . . ,i Km correspond to the nonzero elements in rowm
of the parity-check matrixH.

The similarity between error-correcting codes and phy
cal systems was first pointed out by Sourlas@1#, mapping a
simple Boolean code onto Ising spin models with multisp
interactions. We recently extended his work to more pra
cal parity-check codes@2#. We employ a similar formulation
using the Hamiltonian

H~n;J!5g(G DGdS JG ;2)
i PG

ni D 2F(
i 51

M

ni ~2!

to evaluate the joint probability forJ andn

P~J,n!5 lim
g→`

exp@2bH~n;J!#

~2 coshF !M
. ~3!

Here,G[^ i 1 , . . . ,i K& runs over all combinations ofK indi-
ces out ofM; JG[) i PGz i and the sparse tensorDG becomes
nonzero~unit! only when all indices inG correspond to non-
zero~unit! elements in a certain row of the parity-check m
trix H. Takingg→` enforces the parity-check equation. Th
additive field F5(1/2)ln@(12p)/p# corresponds to the tru
prior probability in the Bayesian framework, reflecting th
flip rate p. The inverse temperatureb is introduced to em-
phasize the link with the statistical mechanics formulat
and is generally fixed tob51 unless specified otherwise.

One can then use Eq.~3! to evaluateP̄E from Eq. ~1! by
calculating the bound without invoking Jensen’s inequal
The first part of the Hamiltonian~2! is invariant under gauge
transformations of the formni→niz i , and JG→JG) i PGz i
51, which decouple the correlation between the dynam
vectorn and the true noisez. Rewriting the Hamiltonian, one
obtains a similar expression to Eq.~2! apart from the last
term on the right, which becomesF( iz ini .
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Quenched averages over the ensemble of codes is ca
out with respect to the current random selection of the spa
tensorD and the noise vector, which eventually results in
similar procedure to the replica method in statistical mech
ics. This gives rise to a set of order parametersqa,b, . . . ,g

5(1/M )( i 51
M Zini

ani
b . . . ni

g , wherea, b, . . . represent rep-
lica indices, and the variableZi comes from enforcing the
restriction ofC connections per index, respectively, as in@2#.
This interesting similarity between Gallager’s method a
the replica method has been pointed out by Iba at the en
the 80s in@8#.

To proceed further one has to make an assumption a
the order parameter symmetry. As a first approximation
assume replica symmetry~RS! in the following order param-
eters and the related conjugate variables

qa,b, . . . ,g5qE dxp~x!xl , q̂a,b, . . . ,g5q̂E dx̂p̂~ x̂!x̂l ,

~4!

wherel is the number of replica indices,q andq̂ are normal-
ization variables@p(x) and p̂( x̂) are probability distribu-
tions#. Unspecified integrals are over the range@21,11#.

Originally, the summation Tr$nÞz%(•) excludes the case o
n5z; however, it can be shown that in the limit of largeM
this becomes identical to the full summation in the nonfer
magnetic phase, wherep(x)Þd(x21) and p̂( x̂)Þd( x̂
21). Then, one obtains the expression

Eav~r,R!52
1

M
ln@^ Tr

$J,z%
P1/(11r)~J,z!

3~Tr$nÞz%P
1/(11r)~J,n!!r&D#

5 ln~2 coshF !2 lnF2 coshS F

11r D G
2

1

M
lnKZNF

r S z,D;
F

11r D L
zu

F
11r ,D

, ~5!

where ZNF(z,D; F/11r) denotes the partition function
Trnlimg→`exp@2bH# in the nonferromagnetic phase for
system with an effective additive fieldF/(11r). Averages
^•&zuF/(11r),D are over the distribution

PS z;
F

11r D5expF F

11r (
i 51

M

z i G Y F2 coshS F

11r D GM

and the uniform distribution of D. Extremizing
^ZNF

r (z,D;F/(11r))&zuF/(11r),D with respect to the orde

parametersq, q̂, p(•), andp̂(•), under the replica symmetry
ansatz~4!, one obtains for the final term in Eq.~5!
3-2
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1

M
lnKZNF

r S z,D;
F

11r D L
zuF/(11r),D

5 Ext*
$q,q̂,p(•),p̂(•)%

H CqK

K E )
i 51

K

dxip~xi !
S 11)

i 51

K

xi

2
D r

1 lnF E )
m51

C

dx̂mp̂~ x̂m!K FeF/(11r)z )
m51

C S 11 x̂m

2
D

1e2F/(11r)z )
m51

C S 12 x̂m

2
D G rL

zuF/(11r)
G1C ln q̂

2Cqq̂E dxdx̂p~x!p̂~ x̂!S 11xx̂

2
D r

2S C

K
2CD J ,

~6!

where Ext* denotes extremization, which excludes the fer
magnetic solution and̂•&zuF/(11r) is overP(z;F/(11r)).

Before proceeding any further, we would like to menti
some general properties ofEav(r,R). From Eqs.~5! and~6!,
it can be shown that limr→0Eav(r,R)50 and
]2Eav(r,R)/]r2,0. This implies that Maxr.0Eav(r,R) be-
comes positive if and only if]Eav(r,R)/]rur50.0, for
which limM→`P̄E50 holds. Therefore, the zero error thres
old, defined as the critical flip rate below which the avera
error rate vanishes asM→`, is obtained from the condition
]Eav(r,R)/]r50. From Eq.~5!, this becomes

F tanhF2
1

M
^ lnZNF~z,D;F !&zuF,D50. ~7!

The second term is the averaged free energy for the Ha
tonian ~2! with respect to the quenched randomnessz
andD in the nonferromagnetic phase. Employing the fer
magnetic gauge@9# one obtains the following expression fo
the ferromagnetic free energy~where P̄E50): (1/M )
3^ lnZF(z,D;F)&zuF,D5F tanhF. Since the correct prior in-
formation about the flip ratep is used in the calculation
these two free energies are actually obtained in Nishimo
finite decoding temperature (b51) @1,10,9,11# for which the
bit error probability is minimized. By satisfying Eq.~7!, the
zero-error threshold for ML decoding, which corresponds
the zero temperature limit (b→`) @1,11#, is determined by
the phase boundary between the ferromagnetic and nonf
magnetic phases atb51.

Using the ferromagnetic gauge provides insight into
physical properties of the system. As the internal energy
bit in the nonferromagnetic system is2F tanhF under
Nishimori’s condition, Eq.~7! implies that the entropy of the
nonferromagnetic phase vanishes at the phase boundar
b51, suggesting that this phase exhibits a replica symm
breaking~RSB! at lower temperatures in general, and atb
→` in particular. In this sense, the zero-error threshold p
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diction obtained from Gallager’s method and ML decodi
is surprising as it provides information about the ferr
nonferro phase boundary atb→`, which is not easily ob-
tained via the methods of statistical physics due to RSB
fects. This argument can be extended to the case of gen
b>1, as will be presented elsewhere.

An analytical expression toEav(r,R) can be obtained in
the limit K,C→`, keeping the code rateR512C/K finite;
for the nonferromagnetic solution one then obtainsq

52r/K, q̂52r(121/K), p(x)5(1/2)(11tanhF)d(x2tanhF)
1(1/2)(12tanhF)d(x1tanhF), andp̂( x̂)5d( x̂). Using Eqs.
~5! and ~6!, one obtains the explicit expressionEav(r,R)
5 ln 2 coshF2(11r)ln@2 coshF/(11r)#1r(12R)ln 2. In ad-
dition, there exists another solution forr>1, q521/K, q̂

52121/K, p(x)5(1/2)d(x21)1(1/2)d(x11), and p̂( x̂)
5(1/2)d( x̂21)1(1/2)d( x̂11) providing Eav(r,R)
5 ln 2 coshF2ln$2 coshF12 cosh(@12r#/@11r#F)%1(1
2R)ln 2. Employing a method similar to that in@12,3#, it can
be shown that both RS solutions are locally stable aga
perturbations to the replica symmetric solution.

The relation betweenEav(r,R) and the entropy of non-
ferromagnetic solutionsSNF

]Eav~r,R!

]r

52

KZNF
r S z,D;

F

11r DSNFS z,D;
F

11r D L
zuF/(11r),D

KZNF
r S z,D;

F

11r D L
zuF/(11r),D

,

suggests another type of RSB, indicated by the negative
tropy. This implies that the entropy of the nonferromagne
RS solutions vanishes atr5r* (R), which maximizes
Eav(r,R); and the tightest lower bound ofE(R) is therefore
obtained at the RSB transition, which can be calculated fr
the locally stable RS solutions.

Solving the maximization problem one obtains

Max
r.0

Eav~r,R!

55
ln 2 coshF2~12R!ln 2, F>2F* ~R!

2 ln~2 coshF12!,

ln 2 coshF2~12R!ln 2, 2F* ~R!>F>F* ~R!

2F tanhF* ~R!,

0, otherwise,
~8!

where F* (R) is the solution of the equation ln 2 coshF*
2F* tanhF*2(12R)ln 250. The position of the maximum is
given as r* (R)51 for F>2F* (R), F/F* (R)21 for
2F* (R)>F>F* (R) and 0, otherwise. Using the relatio
between F and p, this indicates thatE(R) becomes
positive if and only ifR,12H2(p), which corresponds to
Shannon’s limit.
3-3
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Equation~8! is identical to the random coding expone
Er(R) obtained in the IT literature@5#, although one should
emphasize the main differences between the two approac
~a! Strating from Gallager’s inequality~1! we directly aver-
age over the ensemble while theEr(R) result is obtained by
invoking Jensen’s inequality.~b! Our result is obtained for
an ensemble of a specific code.

With some hindsight, this is not very surprising as G
lager codes become similar to random codes in the li
K,C→` @7,2#; this also implies that using Jensen’s inequ
ity does not produce a looser bound as initially thought.

To get a tighter bound for lowR values we employ a
refined inequality, upper bounding the ensemble minimum
PE by ^$Tr$J,z%P

1/(11r)(J,z)@Tr$J,nÞz%P
1/(11r)(J,n)#r%m&D

1/m

(r.0,m.0), as in Eq.~1!. A similar calculation along the
lines described here~details will be shown elsewhere! pro-
vides theexpurgated exponentbound @5# result for low R
values~see Fig. 1!; this links our results to the best bound
reported in the IT literature to date.

Without trivializing the results obtained in the case
K,C→`, the main achievement of our approach is the a
ity to investigate analytically the performance of Gallager~or
similar! codes of finiteK andC. To demonstrate the accurac
of the bounds obtained we examine the case ofK56 and
C53. We numerically evaluatedEav(r,R) ~5! for p
50.0915, a recent highly accurate estimate of the e
threshold for this parameter@13#, and forp50.0990, which
is the threshold predicted by our analysis. The numer
results were obtained by approximatingp(•) andp̂(•) using
106 dimensional vectors and iterating the saddle point eq
tions until convergence. The results are shown in the in
they indicate that Maxr>0Eav(r,R).1.031024.0 for p
50.0915 whileEav(r,R) is maximized~to zero! in the vi-
cinity of r50 for p50.0990, suggesting a tighter estima
for the error threshold than those reported in the IT literatu

In summary, we have developed a method to tightly up
bound the dependence of the decoding error rate on the
sage length for Gallager codes. In the limit of infinite co
nectivity, our result collapses onto the best general rand
coding exponents reported in the IT literatures, therandom
coding exponentand theexpurgated exponentfor high and
low R values, respectively. The method provides one of
only tools available for examining codes of finite connect
et
d
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ity; and predicts the tightest estimate of the zero error no
level threshold to date for Gallager codes. It can be ea
extended to investigate other linear codes of a similar t
and is clearly of high practical significance.

We demonstrated how the methods of statistical phys
may complement and improve results obtained in the IT
erature. These methods are applicable to a broad rang
problems, especially within the subfield of coding, and m
be instrumental in improving existing results; some of the
studies are already under way.

We acknowledge support from the Grants-in-Aid~No.
13680400! ~The Japan-Anglo Collaboration Programme
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FIG. 1. Lower bounds on the reliability exponentE(R) obtained
for p50.01 in the limitK,C→`. Our method produces the sam
result as the random coding exponentEr(R) ~solid line!, which
provides an excellent bound forR.Rb . For low R,Ra values the
bound becomes loose, and a better result~dashed line!, identical to
the expurgated exponent bound, is obtained~see text! by employing
a refined inequality in Eq.~1!. Inset: The exponentEav(r,R) ob-
tained numerically for a choice of finite parametersK56 andC
53 (R51/2). Symbols and standard deviations are computed u
50 numerical solutions. Curves are obtained via a quadratic fit.
p50.0915,r* (R).0.02, suggesting that this flip rate is still belo
the threshold. Left of the peak, the RS solution~thin broken curve!
is unstable. Forp50.0990, our predicted threshold, the maximu
Eav(r,R).0 is obtained atr.0, implying that this is the correc
threshold.
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