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Tighter decoding reliability bound for Gallager’s error-correcting code
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Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite
message length for an ensemble of Gallager’s error correcting codes. We follow Gallager’'s approach of upper
bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general
bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature.
The relation between the methods used and those presented in the information theory literature are explored.
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Many of the problems addressed in the Informationpositive below the channel capacity defining the sensitivity
Theory (IT) literature show great similarity to those treated of the optimal error rate to the message length, complement-
in statistical physics. One of the main areas where these linkig Shannon’s result.
are particularly strong is that of digital communication and Unfortunately, assessing the RF directly is generally dif-
coding theory; these links have been recently examined ificult. Instead, Gallager's powerful meth8] boundsE(R)
the area of low-density parity chegk,2] and turbd 3] error-  from the below utilizing the inequality
correcting codes. It is only natural to expect that some rela-
tions between the analytical methods used in the two disci-
plines will emerge, and that advances in one could be

employed to improve results in the other. In this paper WS&vhich holds for any arbitrary ML estimation, inferring a bi-

focus on such an example. We utilize the replica method Oﬁary vectorx after observing a vectay, and a positive vari-
statistical physics to assess the performance of Gallagerigy e p>0.

error-co_rr_ecting code if‘ the case of finite message Iength, The average error raEE for a certain ensemble of codes
generalizing an established method in the IT communltyis greater than the ensemble minimum. Therefore, averaging

The analysis reproduces the tightest general bound to datg,q'iht hand side of Ed1) over the ensemble, one obtains
but more importantly, it provides exact results to specificy, upper bound to the minimum error rate that scales

code constructions. . . o exponentially with M for large but finite N and M,
Error-correcting codes play a vital role in facilitating re- exd —ME,(p,R)]; the exponenE,,(p,R) serves as tower
liable data transmission, ranging from cellular communica{)oyndof E(R). One can tighten the lower bound by maxi-

tion to data storage on magnetic media. In a general scenariﬁ,izing E.,(p,R) with respect top>0.
the N-dimensional Boolean message {0,1}" is encoded to EvaluatingE,,(p,R) is also difficult (except forp e N).
the M (>N)-dimensional Boolean vectap, and transmitted The strategy used by Gallaggs] is to further upper bound
via a noisy channel, which is taken here to be a binary symthe RHS of Eq(1) utilizing Jensen’s inequalityx”)<(x)*,
metric channe(BSC) characterized by flip probabilitg per  which holds for any 8 p=<1 with respect to the expectation
bit; other transmission channels may also be examinedver any arbitrary distribution of a positive variable. The
within a similar framework. At the other end of the channel,added inequality presumably makes the bound looser. It is
the corrupted codeword is decoded utilizing the structuredherefore surprising that maximizing the exponent with re-
codeword redundancy. spect top €[ 0,1] in the ensemble of all random codes having
The block error raté’;, defined as the probability for a the same rat®, which results in theandom coding expo-
decoding error, serves as a performance measure for the sutent E(R), provides an exact evaluation of the RF for high
cess of the coding method. In his seminal wptk Shannon R values.
showed that the error rate can vanish for code rRteslow However, the bound b¥,(R) becomes loose once the
the channel capacity in the limN,M —; in the case of the optimal value ofp reaches the upper limit of the interval, i.e.,
BSC and unbiased messagessN/M<1—H,(p), where p=1 (corresponding to Bhattacharyya’'s boundt is not
H,(p)=—plogyp—(1—p)logy(1—p). The upper bound, for clear whether Jensen’s inequality or Gallager’s inequéality
infinitely long messages, is often term&thannon’s limitto  is responsible for this breakdown. Moreover, it is unclear
the error-correcting ability. Evaluatingg for practical codes how to devise a similar method for deriving bounds for other
of finite length became one of central topics in IT. (nonrandom codes, a question of high practical significance.
For maximum likelihood ML) decoding where the most In this paper we demonstrate how the methods of statisti-
probable message, given the possibly corrupted codewordal physics may be employed to obtain tighter bounds for
defines the message estimate, it is believed Bhabf the  specific codes. This is carried out by a direct evaluation of
best code scales as ¢xpME(R)]. The non-negative expo- E,,(p,R) for the ensemble of Gallager error-correcting
nentE(R) is termed theeliability function (RF); it becomes codes[6]. This (linean code was rediscovered only recently

Pe< Tr PV (yx)[ Tr PXEA(yx)]?, (D)
{y.xt {x" #x}

1063-651X/2001/641)/0461134)/$20.00 64 046113-1 ©2001 The American Physical Society



KABASHIMA, SAZUKA, NAKAMURA, AND SAAD PHYSICAL REVIEW E 64046113

[7], showing outstanding performance, competitive to other Quenched averages over the ensemble of codes is carried
state-of-the-art techniques. It is characterized by a randomlgut with respect to the current random selection of the sparse
generated M —N) XM Boolean sparse parity-check matrix tensorD and the noise vector, which eventually results in a
H, composed oK and C(=3) nonzero(unit) elements per similar procedure to the replica method in statistical mechan-
row and column, respectively. Encoding the message vectacs. This gives rise to a set of order parametgs; . . ,

£, is carried out using tht X N generating matribxG', sat- =(1/M)Ei'v'=lzini“n{3 ...nY, wherea, B, ... represent rep-
isfying the conditiorHG™=0, wherezy=G'£ (mod 2. The lica indices, and the variablg, comes from enforcing the

M bit codewordz, is transmitted via a noisy channel, BSC in restriction ofC connections per index, respectively, a$2h

the current analysis; the corrupted veaerzy+ ¢ (mod 2 is  This interesting similarity between Gallager's method and
received at the other end, whefe {0,1}™ represents a noise the replica method has been pointed out by Iba at the end of
vector with an independent probabilify per bit having a the 80s in[8].

value 1. Decoding is carried out by multiplyingby the To proceed further one has to make an assumption about
parity-check matrixH to obtain the syndrome vectd=Hz  the order parameter symmetry. As a first approximation we
=H(G'é+=HZ (mod 2, and to find the most probable assume replica symmet(RS) in the following order param-
solution to the parity check equatiddin=J (mod 2, for  eters and the related conjugate variables

estimating the true noise vectdr One retrieves the original
message using the equati®S=z—n (mod 2.

To facilitate the analysis we map the Boolean (0,1) vari- _ I oa _- RN
ables onto the binary+ 1) representation. The binary vec- e, ""y_qf dxm(X)Xs Gap, ""V_qj dxar (X)X,
torsn andJ represent the noise estimate and syndrome vec- 4
tors, respectively; the latter is generated by taking products
of the relevant noise bit3, = {; e -{iK#, where the indices

ik, correspond to thé nonzero elements in row wherel is the number of replica indiceg,andq are normal-

T

of the parity-check matri]. ization variables (x) and 7(x) are probability distribu-
The similarity between error-correcting codes and physifions]. Unspecified integrals are over the rarjgel,+1].
cal systems was first pointed out by Sourfla§ mapping a Originally, the summation ¥ 4(-) excludes the case of

simple Boolean code onto Ising spin models with multispin=¢; however, it can be shown that in the limit of lardye
interactions. We recently extended his work to more practithis becomes identical to the full summation in the nonferro-
cal parity-check codel2]. We employ a similar formulation magnetic phase, wherer(x)# 8(x—1) and (X)# (X
using the Hamiltonian —1). Then, one obtains the expression

M
H(n;J)=y% Dgé Jg;—il_[g ni>—FiZl n 2

1
Eau(p,R)=— rIn[( Tr PE1(J,0)

(3.8
to evaluate the joint probability fof andn x(Tr{nﬁ}pump)(\],n))p>D]
exd — BH(n;J F
P(J,n)=lim M (3) =In(2 coshF)—In 2cosrélT)
y—e (2 coshF)M p
Here,G=(i,, ... ,ix) runs over all combinations d{ indi- - M|n< Zﬁp( ¢D; it > N )
ces out ofM; Jg=II; . ¢¢; and the sparse tensbr; becomes 41350

nonzero(unit) only when all indices irg correspond to non-
zero(unit) elements in a certain row of the parity-check ma- N ]
trix H. Takingy— = enforces the parity-check equation. The Where Zye(£,D; F/1+p) denotes the partition function
additive field F= (1/2)I{(1—p)/p] corresponds to the true T%liM,.-exf—=/7] in the nonferromagnetic phase for a
prior probability in the Bayesian framework, reflecting the System with an effective additive field/(1+p). Averages
flip rate p. The inverse temperatur@ is introduced to em- {*)4Fi1+p),p are over the distribution

E M
calculating the bound without invoking Jensen’s inequality.
The first part of the Hamiltoniaf®) is invariant under gauge
obtains a similar expression to E(R) apart from the last parameters), g, 7(-), and(-), under the replica symmetry
term on the right, which becoméss; {;n; . ansatz(4), one obtains for the final term in E¢p)

1+p

I8

phasize the link with the statistical mechanics formulation
and is generally fixed t@=1 unless specified otherwise. oM .
One can then use E€Q) to evaluateP from Eq. (1) by — : _
E P ex 1+Pi21§| 2 cos i
transformations of the forrm;—n;¢;, and Jg—Jdll; cg¢ ) o o
=1, which decouple the correlation between the dynamica@”g the uniform  distribution ~ of D. Extremizing
vectorn and the true noisé Rewriting the Hamiltonian, one  (ZRe(&,D;F/(1+p))) gri(1+ )0 With respect to the order
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diction obtained from Gallager's method and ML decoding
> is surprising as it provides information about the ferro/
dr/(1+p),D nonferro phase boundary @, which is not easily ob-
K p tained via the methods of statistical physics due to RSB ef-
KK 1+H Xi fects. This argument can be extended to the case of general
- Extt =TT dxrx) =1 B=1, as will be presented elsewhere.
. . K J =3 2 An analytical expression t&,,(p,R) can be obtained in
{q’q’”(')’”(:} the limit K,C— o, keeping the code ra@=1—C/K finite;
fﬂl__ll dx,uﬂ'(x,u)<

1I ) D- F
M PR &0

1+x#
2

for the nonferromagnetic solution one then obtaigs

C
eF’<1+P)4£1 =20, q=2¢(1"1), 7r(x) = (1/2) (1+ tanhF) S{x—tanhF)
+(1/2) (1—tanhF) &(x+tanhF), andw(x) = 6(x). Using Egs.
P R (5) and (6), one obtains the explicit expressid,(p,R)
+ClInq =In 2 coshF—(1+p)In[2 coshF/(1+p) ]+ p(1—R)In 2. In ad-
dFI(1+p) dition, there exists another solution fpr=1, q=2%, q
=2171K  7(x)=(1/2)8(x— 1)+ (1/2)8(x+1), and 7(X)
i R 1exX\? (C =(1/2)8(x—1)+(1/2)5(x+1)  providing  E(p,R)
—quf dXdXTr(X)ﬂ'(X)( > ) —( ) , =In2 coshF—In{2 coshF+2 cosh[1—p]/[1+p]F)}+(1
—R)In 2. Employing a method similar to that jd2,3], it can
(6) be shown that both RS solutions are locally stable against
perturbations to the replica symmetric solution.
where Ext denotes extremization, which excludes the ferro- ~ The relation betweeik,, (p,R) and the entropy of non-
magnetic solution and- ) |r/1+ ) is overP(LF/(1+p)). ferromagnetic solutionSye
Before proceeding any further, we would like to mention E. (p.R)
some general properties Bf,(p,R). From Eqgs.(5) and(6), TEalp )
it can be shown that lim oE,(p,R)=0 and ap
9*E4,(p,R)/3p<0. This implies that Max. E,, (p,R) be-

+In

©[1-%
+e—F/(1+p)§H ( M)
n=1 2

comes positive if and only if9E,,(p,R)/dp|,-o>0, for o ) )

o — ZNF §,D,1+ SNF §,D,l+
which limy_,..Pg=0 holds. Therefore, the zero error thresh- p Pl gria+p),D
old, defined as the critical flip rate below which the average ~ = '
error rate vanishes @4 —, is obtained from the condition <Z&F ¢D; 11, >
JE,,(p,R)/dp=0. From Eq.(5), this becomes PIT grici+p).0

1 suggests another type of RSB, indicated by the negative en-
F tanhF — —(INZye(&,D;F)) gr p=0. (7)  tropy. This implies that the entropy of the nonferromagnetic
M ' RS solutions vanishes ap=p*(R), which maximizes
E.,(p,R); and the tightest lower bound &f(R) is therefore

The second term is the averaged free energy for the Hamibptained at the RSB transition, which can be calculated from
tonian (2) with respect to the quenched randomndSs the |ocally stable RS solutions.

andD in the nonferromagnetic phase. Employing the ferro-  go|yving the maximization problem one obtains

magnetic gaugg9] one obtains the following expression for

the ferromagnetic free energywhere Pg=0): (1M)  MaxE,,(p,R)

X(InZK(¢,D;F)) 4¢ o=F tanhF. Since the correct prior in-  »~°

formation about the flip rate is used in the calculation,

these two free energies are actually obtained in Nishimori’s In2 costF—(1-R)In2, F=2F*(R)

finite decoding temperatureg8= 1) [1,10,9,11 for which the —In(2 coshF +2),

bit error probability is minimized. By satisfying Eq7), the * %

zero-error threshold for ML decoding, which corresponds to In2 costF—(1-Rjin2, 2F*(R)=F=F*(R)

the zero temperature limitd— o) [1,11], is determined by —FtanhF*(R),

the phase boundary between the ferromagnetic and nonferro- 0, otherwise,

magnetic phases #=1. (8)
Using the ferromagnetic gauge provides insight into the

physical properties of the system. As the internal energy pewhere F*(R) is the solution of the equation In2coBh

bit in the nonferromagnetic system is FtanhF under —F*tanhF*—(1—R)In2=0. The position of the maximum is

Nishimori’'s condition, Eq(7) implies that the entropy of the given as p*(R)=1 for F=2F*(R), F/F*(R)—1 for

nonferromagnetic phase vanishes at the phase boundary 2F* (R)=F=F*(R) and 0, otherwise. Using the relation

B=1, suggesting that this phase exhibits a replica symmetrpetween F and p, this indicates thatE(R) becomes

breaking(RSB) at lower temperatures in general, and@at positive if and only ifR<1—H,(p), which corresponds to

— o0 in particular. In this sense, the zero-error threshold preShannon’s limit.
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Equation(8) is identical to the random coding exponent 25 - Py :
E,(R) obtained in the IT literaturgs], although one should ~ L p=0.0915
emphasize the main differences between the two approaches: 2t % ox10%4:2
(@) Strating from Gallager’s inequalityl) we directly aver- =
age over the ensemble while tBe(R) result is obtained by = 157 < 240 =0.0990 + |
invoking Jensen’s inequalityb) Our result is obtained for = = '

o 1t -4x1 61 : ]
an ensemble of a specific code. 0 002,004 0.08

With some hindsight, this is not very surprising as Gal- %59'356&:0'559 R.=0.919]
lager codes become similar to random codes in the limit =0
K,C—x [7,2]; this also implies that using Jensen’s inequal- 0 . . .
ity does not produce a looser bound as initially thought. 0 0.2 04 06 0.8 1

To get a tighter bound for lovR values we employ a R
refined inequality, upper bounding the ensemble minimum of £, 1. Lower bounds on the reliability expond#¢R) obtained
Pe by <{Tr{a,g}P1/(1+p)(J:Q[TV{J,nseg}Pll(Hp)(J,n)]P}m>gm for p=0.01 in the limitK,C—c. Our method produces the same
(p>0m>0), as in Eq.(1). A similar calculation along the result as the random coding expondft(R) (solid line), which
lines described her&details will be shown elsewher@ro-  provides an excellent bound f&>R, . For low R<R, values the
vides theexpurgated exponeriiound[5] result for low R bound becomes loose, and a better re@ldshed ling identical to
values(see Fig. J; this links our results to the best bounds the expurgated exponent bound, is obtaifsxe text by employing
reported in the IT literature to date. a refined inequality in Eq(1). Inset: The exponer,,(p,R) ob-

Without trivializing the results obtained in the case of tained numerically for a choice of finite parametéts=6 andC
K,C— o, the main achievement of our approach is the abil-=3 (R=1/2). Symbols and standard deviations are computed using
ity to investigate analytically the performance of Gallagmr 50 numerical solutions. Curves are obtaingd v_ia a qu_adrgtic fit. For
similar) codes of finitek andC. To demonstrate the accuracy P=0-0915,p*(R)=0.02, suggesting that this flip rate is still below
of the bounds obtained we examine the cas&ef6 and the threshold. Left of the peak, the RS soluti@inin broken curvg
C=3. We numerically evaluatedE,,(p,R) (5) for p is unstable. Fop=0.0990, our predicted threshold, the maximum
_ . avil. E.,(p,R)=0 is obtained ap=0, implying that this is the correct
=0.0915, a recent highly accurate estimate of the erro[hrveshold
threshold for this parameté¢i 3], and forp=0.0990, which '

is the threshold predicted by our analysis. The numericayy: and predicts the tightest estimate of the zero error noise
results were obtained by approximating-) and(-) using  level threshold to date for Gallager codes. It can be easily
10P dimensional vectors and iterating the saddle point equaextended to investigate other linear codes of a similar type
tions until convergence. The results are shown in the insetnd is clearly of high practical significance.
they indicate that Max oE,,(p,R)=1.0X 10 4>0 for p We demonstrated how the methods of statistical physics
=0.0915 whileE,,(p,R) is maximized(to zerg in the vi-  may complement and improve results obtained in the IT lit-
cinity of p=0 for p=0.0990, suggesting a tighter estimate erature. These methods are applicable to a broad range of
for the error threshold than those reported in the IT literatureproblems, especially within the subfield of coding, and may
In summary, we have developed a method to tightly uppebe instrumental in improving existing results; some of these
bound the dependence of the decoding error rate on the mestudies are already under way.
sage length for Gallager codes. In the limit of infinite con- We acknowledge support from the Grants-in-AiNo.
nectivity, our result collapses onto the best general randort3680400 (The Japan-Anglo Collaboration Programme of
coding exponents reported in the IT literatures, taedom  the JSPB(Y.K.), EPSRC(GR/N00562 and the Royal Soci-
coding exponenand theexpurgated exponerior high and ety (D.S). Y.K. would like to thank Y. Iba for kindly show-
low R values, respectively. The method provides one of théng him an unpublished manuscrif] and D.J.C. MacKay
only tools available for examining codes of finite connectiv-for informing us of[13] prior to publication.
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